The Werner syndrome protein functions in repair of Cr(VI)-induced replication-associated DNA damage.
نویسندگان
چکیده
Werner syndrome is a premature aging disorder characterized by cancer predisposition that is caused by loss of the Werner syndrome protein (WRN) helicase/exonuclease DNA repair protein. Hexavalent chromium is an environmental carcinogen and genotoxicant that is associated with respiratory cancers and induces several forms of DNA damage, including lesions that interfere with DNA replication. Based on the evidence that WRN protein facilitates repair of stalled and collapsed replication forks, we hypothesized that WRN functions in the cellular response to and recovery from Cr(VI)-induced genotoxicity and genomic instability. Here we report that human cells deficient in WRN protein are hypersensitive to Cr(VI) toxicity, and exhibit a delayed reduction in DNA breaks and stalled replication forks, indicated by gammaH2AX foci, during recovery from Cr(VI) exposure. Cr(VI)-induced WRN protein translocation from the nucleoli into nucleoplasmic foci in S-phase cells, and these foci colocalized with gammaH2AX foci indicating WRN responds to replication-associated DNA damage. As further evidence that Cr(VI) triggers stalled DNA replication, we observed Cr(VI) treatment induced an accumulation of cells in S-phase that exhibited high levels of gammaH2AX foci. Therefore, these data demonstrate a novel role for WRN protein in cellular protection against the environmental genotoxicant Cr(VI) and further provide evidence that Cr(VI) induces DNA replicative stress which has implications for aging and cancer.
منابع مشابه
The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress
Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and...
متن کاملThe Caenorhabditis elegans Werner Syndrome Protein Functions Upstream of ATR and ATM in Response to DNA Replication Inhibition and Double-Strand DNA Breaks
WRN-1 is the Caenorhabditis elegans homolog of the human Werner syndrome protein, a RecQ helicase, mutations of which are associated with premature aging and increased genome instability. Relatively little is known as to how WRN-1 functions in DNA repair and DNA damage signaling. Here, we take advantage of the genetic and cytological approaches in C. elegans to dissect the epistatic relationshi...
متن کاملDNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage
Hexavalent chromium (Cr[VI]) is associated with occupational lung cancer and poses a significant public health concern. When exposed to Cr[VI], cells rapidly internalize this compound and metabolize it to Cr[III]. Byproducts of Cr[VI] metabolism include unstable Cr[V] and Cr[IV] intermediates that are believed to be directly responsible for the genotoxicity and carcinogenicity caused by Cr[VI] ...
متن کاملProtein Degradation Pathways Regulate the Functions of Helicases in the DNA Damage Response and Maintenance of Genomic Stability
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom's syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the F...
متن کاملRoles of the Werner syndrome RecQ helicase in DNA replication.
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2009